St Aloysius College (Autonomous) Mangaluru SEMESTER IV - PG EXAMINATION - M.Sc Mathematics **MAY - 2024**

MEASURE THEORY AND INTEGRATION

	MEASURE THEORY AND INTEGRATION	
Time :	3 Hours Max. Marks : 7	70
	Answer FIVE FULL questions (14x5=70)	
1.	a. Prove that the following statements regarding a subset E of $\mathbb R$ are equivalent:	6
	1. E is measurable.	
	2. For every $\epsilon>0$, there exists an open set O containing E such that $m^*(O-E)<\epsilon$.	
	3. There exists a G_δ set, $G\supseteq E$ such that $m^*(G-E)=0.$	
	b. Define a measurable function. Prove that the following statements are equivalent:	
	1. f is a measurable function.	8
	2. For each $lpha \in \mathbb{R}, ig\{x: f(x) \geq lpha ig\}$ is measurable.	
	3. For each $lpha \in \mathbb{R}, ig\{x: f(x) < lphaig\}$ is measurable.	
	4. For each $lpha \in \mathbb{R}, ig\{x: f(x) \leq lphaig\}$ is measurable.	
	the came measurable set	5
2.	a. If f , g are real valued measurable functions defined on the same measurable set E and c is any real number, then prove that $f+c$, fc and $f+g$ are measurable.	
	b. If f is a measurable function and $f=g\ a.\ e.$ then prove that g is measurable.	4
	c. If $\{f_n\}$ is a sequence of measuable functions defined on the same measurable set then show that $\sup f_n$ and $\inf f_n$ are measurable.	5
		4
3.	a. Show that every finite set has zero outer measure.	5
	b. If f and g are measurable functions then prove the following:	
	1. $ess sup(f+g) \le ess sup f + ess sup g$.	
	2. $\operatorname{esssup} f = -\operatorname{essinf}(-f)$.	5
	c. Show that for any subset A of \mathbb{R} , $m^*(A) = m^*(A+x)$ where $A+x=\{a+x\mid a\in A\}$.	
4.	a. If A and B are disjoint measurable sets and f is an integrable function then show that $\int_A f \ dx + \int_B f \ dx = \int_{A \cup B} f \ dx.$	5
	that $\int_A \int dx + \int_B \int dx$	4
	b. Let $\{f_n\}$ be a sequence of integrable functions such that $\sum_{n=1}^{\infty}\int f_n \ dx<+\infty$. Then prove that the series $\sum_{n=1}^{\infty}f_n$ converges $a.e.$, its sum f is integrable and $\int f\ dx=\sum_{n=1}^{\infty}\int f_n\ dx$.	
	c. State Fatou's lemma. State and prove the Lebesgue monotone convergence theorem. ST. ALOYSIUS COLLEGE PG Library Contd2 MANGALORE - 575 00	5
	MANGALURO	

Page No. 2
PH 561.4

8

6

6

8

5

4

5

8

6

5. a. Define integral of a non-negative measurable function. Show that if f is a non-negative measurable function then f=0 a.e. if and only if $\int f \, dx=0$.

- b. Show that if f and g are measurable, $|f| \leq |g| \ a. \ e.$ and g is integrable then f is integrable.
- 6. a. Show that a convex function on any interval (a,b) is continuous.
 - b. State and prove Jensen's inequality.
- 7. a. State and prove Minkowski's inequality.
 - b. Show that $L^p(X,\mu)$ is a vector space over $\mathbb R.$
 - c. If ψ is convex on (a,b) and a < s < t < u < b then show that $\psi(s,t) \leq \psi(s,u) \leq \psi(t,u)$.
- 8. a. State and prove the Hahn decomposition theorem.
 - b. Define a signed measure. If $[|X,\mathcal{S},\mu|]$ is a measure space and f is a nonnegative measurable function then prove that $\phi(E)=\int_E f\ d\mu$ is a measure on the measurable space $[|X,\mathcal{S}|]$.

St Aloysius College (Autonomous) Mangaluru SEMESTER IV - PG EXAMINATION - M.Sc Mathematics MAY - 2024

	MAY - 2024	
	Complex Analysis II Max. Mark	s:70
Time :	3 Hours (14x5=70)	
1.	Answer FIVE FULL questions a. i) Let Ω be a multiply connected region of connectivity n then show that every cycle γ in Ω is homologous to a linear combination of the cycles $\gamma_1, \gamma_2, \ldots, \gamma_{n-1}$ and the linear combination is uniquely determined. ii) Illustrate an annulus and show that the integral of an analytic function over a cycle is a multiple of a single period whose value is independent of	6
	the radius. b. Prove that a region is simply connected if and only if $n(\gamma,a)=0$ for all cycles γ in Ω and all points a which do not belong to Ω .	8
2.	a. State and prove the Residue theorem.	6
	b. Find the residue of the function $f(z)=rac{e^z}{(z-a)(z-b)}$. Also show that the residue at a	
	removable singularity is zero.	_
3.	a. Evaluate i) $\int_0^{2\pi} \frac{1}{2-cos\theta}d\theta$ ii) $\int_0^{2\pi} \frac{e^z}{z^4+5z^3}dz, \ \ c: z =2$	5
	JC 2 1 02	5
	b. Compute $\int_0^\pi \frac{d\theta}{a + cos\theta}, \ a > 1$	4
	c. Evaluate $\int_c \frac{a + cos heta}{(z - \pi i)^2} dz, \; c: z = 5$	
4.	a. Prove that a non-constant harmonic function has neither a maximum nor a minimum in its region of definition. Also prove that the maximum and minimum on a closed bounded set E are taken on the boundary of E .	8
	b. Define a piecewise continuous function and Poisson's integral of a piecewise continuous real valued function u defined on a unit circle. Suppose $f(z)$ is analytic in the whole plane, real on the real axis and purely imaginary on the imaginary axis, then show that $f(z)$ is an odd function.	6
5.	a. If u_1 and u_2 are harmonic in a region Ω , then prove that $\int_{\gamma} u_1^* du_2 - u_2^* du_1 = 0$ for every cycle γ which is homologous to zero in Ω .	6
	b. State and prove Poisson's formula.	8
6.	a. If the functions $f_n(z)$ are analytic and non-zero in a region Ω , and if $f_n(z)$ converges to $f(z)$ uniformly on every compact suset of Ω , then prove that $f(z)$ is either identically zero or never equal to zero in Ω .	8
	b. Show that $\lim_{n\to\infty}(1+\frac{z}{n})^n=e^z$ uniformly on every compact subset of the	6
7.	complex plane. a. If $f(z)$ is analytic in a region Ω containing z_0 , then show that the representation	8
	$f(z)=f(z_0)+f'(z_0)rac{z-z_0}{1!}+\ldots+f^n(z_0)rac{(z-z_0)^n}{n!}+\ldots$ is valid in the largest open disk of center z_0 contained in Ω .	6
	b. State and prove Weirstrass theorem.	
8.	a. Show that $\frac{\pi^2}{sin^2\pi z}=\sum_{n=-\infty}^{\infty}\frac{1}{(z-n)^2}$. Deduce that $\pi cotz=\frac{1}{z}+\sum_{n\neq 0}[\frac{1}{z-n}+\frac{1}{n}]$.	8

b.State and prove Mittag-Leffler's theorem.

6

		and the second section of the sect	printed by the same of
Reg No	:		

St Aloysius College (Autonomous) Mangaluru SEMESTER IV - PG EXAMINATION - M.Sc Mathematics MAY - 2024

Functional Analysis

Time : 3 Hours	Max. Marks: 70
Answer FIVE FULL questions (14	x5=70)
a. State and prove the Baire's category theorem.	8
b. State and prove the Cantor's intersection theorem.	6
 a. State and prove Holder's inequality and hence deduce Minkowski's inequality n—tuples of scalars. 	
b. Define the equivalence of two norms in a linear space. Let L be a linear made into a normed linear space by $. $ and $. '$. Show that these tw are equivalent if and only if there exist positive reals K_1 and K_2 such the $K_1 x \leq x ' \leq K_2 x $, for all $x \in L$.	o norms
3. a. Let M be a closed linear subspace of a normed linear space N . Prove the N/M forms a normed linear space with respect to the norm given by $ x+M =\inf\{\; x+m :m\in M\},\;$ for every $x+M\in N/M.$	
b. Prove that the set of all bounded linear transformations $\mathcal{B}(N,N')$ of a relinear space N into a normed linear space N' forms a normed linear space to the norm given by $\ T\ = \sup\{\ T(x)\ : x \in N, \ x\ \le 1\}$.	normed 6 ace with
4. a. Define the conjugate space N^{\ast} of a normed linear space N . Show that embedded in $N^{\ast\ast}$.	
b. Let B be a Banach space and N be a normed linear space. If $\{T_i\}$ is a reset of continuous linear transformations of B into N with the property the $\{T_i(x)\}$ is a bounded subset of N for each vector $x \in B$, then prove the $\{\ T_i\ \}$ is a bounded set of numbers.	nat
5. State and prove the open mapping theorem.	14
6. a. If M is a proper closed linear subspace of a Hilbert space $H,$ then prove there exists a nonzero vector z_0 in H such that $z_0 \perp M.$	
b. If M and N are closed linear subspaces of a Hilbert space H such that then prove that the linear subspace $M+N$ is also closed.	$M \perp N$, 5
c. State and prove the parallelogram law in a Hilbert space $H.$ Does the Parallelogram law hold in the Banach space $l_1^n?$ justify your answer.	4
7. a. Show that a unitary operator T is an isometric isomorphism of H into it the converse true? Justify.	self. Is 8
b. Define an orthonormal set in a Hilbert space H . For a finite orthonormal $\{e_1,e_2,\ldots,e_n\}$ in a Hilbert space H and $x\in H$, show that $x-\sum_{i=1}^n\langle x,e_i\rangle\perp e_j$, for each $j,1\leq j\leq n$.	set 6
8. a. Define the orthogonal complement M^\perp of a subspace M of a Hilbert sp H . Show that M^\perp is a closed linear subspace of H . If M is a closed linear subspace of a Hilbert space H , then prove that $H=M\oplus M^\perp$.	pace 8 ear
b. Let H be a Hilbert space. If T is an operator on a Hilbert space H for w $\langle Tx,x\rangle=0$ for all $x\in H,$ then show that $T=0.$ Further prove that an T on a Hilbert space is self-adjoint if and only if $\langle Tx,x\rangle$ is real for all x	n operator

St Aloysius College (Autonomous) Mangaluru SEMESTER IV - PG EXAMINATION - M.Sc Mathematics

MAY - 2024 Partial Differential Equations Max. Marks: 70 Time: 3 Hours Answer FIVE FULL questions 1. a. Prove that a necessary and sufficient condition for a differential equation 8 P(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz=0 to be integrable 6 X. Curl X = 0.b. Test for integrability of $(y+z) \, dx + (x+z) \, dy + (x+y) \, dz = 0$ and find its primitive. 6 2. a. Prove necessary and suffcient condition that there exists between two functions U(x,y) and V(x,y) a relation F(U,V)=0 not involving x or y explicitly is 8 b. Test for integrability of $yz(1+4xz)\ dx-xz(1+2xz)\ dy-xy\ dz=0$ and find its primitive. 3. a. Find the characteristic of the equation $p^2+q^2=2z$ and determine the integral 8 surface which passess through the circle $x^2 + y^2 = 1$ and u = 1. b. Derive a necessary condition for the compatibility of $f(x,y,u,p,q)=0\,\,$ and 6 g(x, y, u, p, q) = 0.4. a. Obtain the partial differential equation by eliminating the arbitrary function f6 from the following, i) $f(x^2 + y^2 + z^2, z^2 - 2xy) = 0.$ ii) $u = f(\frac{xy}{x})$. 8 b. Find the integral surface of the linear partial differential equation $2y(u-3)u_x+(2x-u)u_y=y(2x-3)$ which passes through the circle $x^2 + y^2 = 2x, u = 0.$ 8 5. a. Find the family of surfaces which is orthogonal to one parameter family of surfaces z(x+y)=c(3z+1), where c is a constant, which passes through the circle $x^2 + y^2 = 1, z = 1$. 6 b. Solve $(D^2 - DD')u = cosxcos2y$. ST. ALOYSHIS COLLEGE. 8 PG Library 6. a. Solve $(D^2 + DD' - 6D'^2)u = ycosx$. MANGALORE-575 003 6 b. Solve $(3D^2-D')u=sin(x+y)e^x$. 6 7. a. Obtain the solution of the wave equation $u_{tt}=c^2u_{xx}$ under the following i) u(0,t)=u(2,t)=0 ii) $u(x,0)=\sin(\frac{\pi x}{2})$ iii) $u_t(x,0)=0$ conditions b. Classify the equation $u_{xx}-2sinxu_{xy}-cos^2xu_{yy}-cosxu_y=0$ and reduce it 8

into cannonical form.

8

- 8. a. Solve the one dimentional diffusion equation $T_t=c^2T_{xx}$ in the region $0\leq x\leq \pi,\ t\geq 0$ subject to
 - i) T remains finite as $t o \infty$
 - ii) T=0 if x=0 and $x=\pi, \forall t$

iii) At $t=0,\ T=egin{cases} x & 0 \leq x \leq rac{\pi}{2} \\ \pi-x & rac{\pi}{2} \leq x \leq \pi \end{cases}$

b. Obtain the D'Alemberts solution of the initial value problem of Cauchy type described as $z_{tt}-C^2z_{xx}=0, -\infty < x < \infty, \ t>0,$ initial

conditions $z(x,0)=f(x), z_t(x,0)=g(x),$ where f and g are twice continuously differentiable functions on \mathbb{R} .