PH 561.2

Reg No

St Aloysius College (Autonomous) Mangaluru SEMESTER II - PG EXAMINATION - M.Sc Mathematics

MAY - 2024

MAY - 2024	ST. ALOYSIUS COLLEGE
Algebra II	MANGALORE - 575 003 Max. Marks: 70
	MANGALORD (14x5=70)
	and the state of t

8

6

6

8

6

8

6

8

8

6

8

6

6

8

8

6

Time: 3 Hours

Answer FIVE FULL questions

- 1. a. Prove that in an integral domain existence of factorisation holds if and only if every increasing chain of principal ideals is stationary.
 - b. Prove that every Euclidean domain is a principal ideal domain.
- 2. a. Define primitive polynomial. Prove that every nonzero polynomial $f(x) \in \mathbb{Q}[x]$ can be writen as a product of a rational number and a primitive polynomial in $\mathbb{Z}[x]$
 - b. State and prove Eisenstein's criterion for irreducibility of a polynomials in $\mathbb{Q}[x].$ Verify whether the polynomial $x^5-64x^4+127x^3-200x+99$ is irreducible in $\mathbb{Q}[x]$.
- 3. a. Let $f(x)=a_nx^n+\cdots+a_1x+a_0$ be an integer polynomial and p be a prime integer such that $p \nmid a_n.$ If the residue $ar{f}$ of f modulo p is an irreducible element in $F_p[x]$, then prove that f is irreducible element in $\mathbb{Q}[x]$.
 - b. Prove that the polynomial ring $\mathbb{Z}[x]$ is a unique factorization domain.
- 4. a. If f(x) is a polynomial over a field F prove that f(x) has no multiple roots in any extension of F if and only if f(x) and f'(x) are relatively prime in F[x].
 - b. Let L and K be extensions of a field F . Let $lpha \in L$ and $eta \in K$ be algebraic over F. Prove that there exists an F-isomorphism from F(lpha) to F(eta) if and only if lpha and eta are the roots of the same irreducible polynomial over F .
- 5. a. If $F\subseteq K\subseteq L$ are field, then prove that [L:F]=[L:K][K:F]. Also Determine $[\mathbb{Q}(3\sqrt{2},4\sqrt{5}):\mathbb{Q}]$
 - b. Let K be an extension of field F. Prove that, the elements of K which are algebraic over F forms a subfield of K containing F.
- 6. a. Let F be a field with $\,p^n$ elements and m be a positive integer. Prove that F has a subfield with p^m elements if and only if $m \mid n$. Also determine the number of subfields of a field with 2^{2024} elements.
 - b. Define finite field and prove that characteristic of a finite field is a prime.
- 7. a. Define algebraic closure $\,$ and prove that if F is a finite field, then F cannot be algebraically closed.
 - b. Show that the set of all constitutible real numbers form a subfield of \mathbb{R} containing \mathbb{Q} .
- 8. a. State and prove the fundamental theorem of Galois theory.
 - b. If K is a Galois extension of a field F , then prove that the fixed field of K is F .

Reg No :

St Aloysius College (Autonomous) Mangaluru SEMESTER II - PG EXAMINATION - M.Sc Mathematics MAY - 2024

Real Analysis II

	Max. Mark	s:70
Time: 3	(14x5=70)	
Answer 1.	FIVE FULL questions a. If $f \in \mathcal{R}(\alpha)$ on $[a, b]$ and $a < c < b$, then prove that $f \in \mathcal{R}(\alpha)$ on $[a, c]$ and $[c, b]$. Also prove that $\int_a^b f d\alpha = \int_a^c f d\alpha + \int_c^b f d\alpha$.	. 8
	b. Suppose f is bounded on $[a,b]$, f has finitely many points of discontinuity on $[a,b]$ and α is continuous at every point at which f is continuous. Then prove that $f \in \mathscr{R}(\alpha)$.	6
2.	a. Let f be a bounded function and let α be a monotonically increasing function on	6
	$[a,b]$, then show that $\int_a^b f d\alpha \leq \int_a^b f d\alpha$. Also if $f \in \mathcal{R}(\alpha)$ on $[a,b]$ and if $ f(x) \leq M$, \forall	
	$x \in [a, b]$, then prove that $\left \int_a^b f d\alpha\right \leq M(\alpha(b) - \alpha(a))$.	8
	 b. i) Suppose f∈ R on [a, b] where f: [a, b] → R^k. Define F(x) = ∫_a^x f(t) dt, a ≤ x ≤ b. Prove that F: [a, b] → R^k is continuous. Also if f is continuous at x₀, then prove that F is differentiable at x₀ and F'(x₀) = f(x₀). ii) State and prove the Fundamental theorem of Vector Calculus. 	
3.	a. Define uniform metric. Prove that $\mathcal{C}(X)$ is a complete metric space with the metric defined by $d(f,g) = f-g $, $\forall f,g \in \mathcal{C}(X)$.	6
	b. Define a equicontinuous family of complex valued functions. If K is a compact metric space, if $f_n \in C(K)$, $n = 1, 2, \ldots$ and if $\{f_n\}$ converges uniformly on K , then prove that $\{f_n\}$ is equicontinuous on K .	8
4.	a. Define a pointwise bounded sequence. If $\{f_n\}$ is a pointwise bounded sequence of complex functions on a countable set E , then prove that $\{f_n\}$ has a convergent subsequence $\{f_{n_k}\}$ such that $\{f_{n_k}(x)\}$ converges for every $x \in E$.	6
	b. Prove that there exists a real continuous function on the real line which is nowhere differentiable.	8
5.	a Let R be the uniform closure of algebra A of bounded functions on a set E . Then	6
	prove that <i>B</i> is a uniformly closed algebra. b. State and prove the uniform convergence and continuity theorem. Is the converse true? Justify.	8
6.	a. State and prove Cauchy's test. Furthermore if a function ϕ is bounded in $[a,\infty)$ and integrable in $[a,x], x \geq a$ and if $\int_a^\infty f dx$ is absolutely convergent then prove that	4
	$\int_{a}^{\infty} f \phi \ dx$ is also absolutely convergent.	5
	b. If f and g are two functions on [a, b] such that $\lim_{x\to a^+} \frac{f(x)}{g(x)} = l$ where l is a non-zero	3
	finite number then prove that the two integrals $\int_a^b f dx$ and $\int_a^b g dx$ converge of	
	diverge together at a.	5
	c. Examine the convergence of $\int_0^2 \frac{dx}{2x-x^2}$	

5

5

8

6

- 7. a. If $\phi(x)$ is bounded and monotonic in $[a, \infty)$ and tends to zero as $x \to \infty$ and $\int_a^x f \, dx$ is bounded for $x \ge a$ then prove that $\int_a^\infty f \phi \, dx$ is convergent.
 - b. Check the convergence of:
 - $i) \int_0^{\pi} \frac{\sin x}{x^3} dx$
 - ii) $\int_0^1 logx dx$
 - c. Prove that every absolutely convergent integral is convergent.
- 8. a. Suppose f is a continuous-differentiable mapping of an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^n , f'(a) is invertible for some $a \in E$ and b = f(a), then prove that there exist open sets U, V in \mathbb{R}^n such that $a \in U, b \in V$, f is one-one on U and f(U) = V.
 - b. Suppose f is a continuous-differentiable mapping of an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^n , f'(a) is invertible for some $a \in E$ and b = f(a). If g is the inverse of f defined in V by g(f(x)) = x, then prove that $g \in \mathcal{C}'(V)$.

Reg No :

St Aloysius College (Autonomous) Mangaluru SEMESTER II - PG EXAMINATION - M.Sc Mathematics MAY - 2024

Research Methodology and Ethics

Time: 3	3 Hours Max. Marks	: 70
Answer	FIVE FULL questions (14x5=70)	
1.	 Discuss the importance of defining research objectives and hypotheses in the research process. 	6
	b. Write a short note on: i) Objectives of research ii) motivation in research	8
2.	a. What is the purpose of research, and why is it important in advancing knowledge in various fields?	8
	b. Explain the benefits of literature review in research.	6
3.	a. Describe the techniques involved in defining a research problem.	6
	b. Describe various types of research with example.	8
4.	a. Define and explain the concept of a mathematical definition. Discuss the importance of precise definitions in mathematics and their role in establishing the framework for mathematical reasoning.	6
	b. What is Latex? Explain its role in mathematical documentation.	8
5.	a. Explain the essential rules involved in preparing a mathematical document.	6
	 b. Choose a significant mathematical theorem or result related to your field of study or interest and explain its statement and significance. 	8
6.	 Describe the concept of Intellectual Property Rights. Explain its origin and importance. 	6
	b. Write the meaning and importance of patents, copyrights, and trademarks.	8
7.	a. What are the key principles of research ethics, and why are they important in scientific inquiry?	6
	 What does scientific misconduct refer to? Discuss the various forms of scientific misconduct. 	8
8.	a. Explain the concept of copyright and its importance in academic and creative works. What are various subjects covered under copyrights? explain.	8
	 Describe the roles of co-authors, contributors, and acknowledgments in scholarly publications. Provide examples of ethical dilemmas related to authorship and contributorship. 	6

ST. ALOYSIUS COLLEGE
PG Library
MANGALORE-575 004

St Aloysius College (Autonomous) Mangaluru SEMESTER II - PG EXAMINATION - M.Sc Mathematics MAY - 2024

Linear Algebra II Max. Marks: 70 Time: 3 Hours (14x5=70)Answer FIVE FULL questions 1. a. Let (w_1, w_2, \ldots, w_k) be an orthonormal basis of a subspace W of V and let 5 $v \in V$. Then show that the orthogonal projection $\pi(v)$ is a vector given by $\pi(v) = \langle v, w_1 > w_1 + \langle v, w_2 > w_2 + \ldots + \langle v, w_k > w_k.$ 4 b. Define the following terms: 1. Hermitian form on a finite dimensional complex vector space $oldsymbol{V}$. Positive definite Hermitian form. 5 c. If A is a non-singular skew-symmetric m imes m matrix then prove that m is even and there exists $Q\in GL_m(F)$ such that $QAQ^t=J_{2n}=\left[egin{array}{cc} 0 & I_n \ -I_n & 0 \end{array}
ight]$ where $n=\frac{1}{2}m$. a.Find an orthogonal basis for the form X^tAY on \mathbb{R}^n where $A=\begin{bmatrix}1&0&1\\0&2&1\\1&1&1\end{bmatrix}$. 6 2. 8 b. If A is a n imes n real symmetric matrix then show that e^A is symmetric and positive definite. 14 State and prove Sylvester's law. 5 4. a. If T is a linear operator on a Hermitian space V and $\,T^{st}$ is the adjoint operator then prove that T is normal if and only if $< T(v), T(w) > = < T^*(v), T^*(w) >, \forall v, w \in V.$ 5 b. Find an orthonormal basis for \mathbb{R}^2 with respect to the form X^tAY where c. Define orthogonal complement W^\perp of a subspace W of a vector space V . Show 4 that W^{\perp} is a subspace of V. 4 5. a. If M is a R-module and N is a submodule of M then prove that $\eta \! : \! M o {}^M ig/_N$ defined by $\eta(x) = x + N, orall x \in M$, is a surjective module 5 homomorphism with $\ker \eta = N$. b. If N is a submodule of M then prove that there exists a bijective correspondence between the set of all submodules of M which contains N and the set of all 5 submodules of M/N. c. If M is a R-module and N is a submodule of M such that both N and M are finitely generated, then show that the number of elements in a generating set for N need not be less than or equal to the the number of elements in a generating set 6. a. If V is a simple R-module then prove that the set of all endomorphisms of V is a 6 8 b. Define a free R-module. If M is a finitely generated R-module then prove that

M is isomorphic to a quotient of R^n for some $n\in\mathbb{N}.$

Contd...2

7.

8

- a. Find the integer solutions of AX=0 where $A=\begin{bmatrix}3&1&-4\\2&-3&1\\-4&6&-2\end{bmatrix}$.
- b. Define a Noetherian module. If R is a Noetherian ring then show that every proper ideal of R is contained in a maximal ideal of R.
- 8. a. If M is an R-module and N is a submodule of M then prove that $M \Big/_N = \{x + N : x \in M\}$ is a R-module. Also, state and prove the first isomorphism theorem for modules.
 - b. Determine the abelian group presented by the matrix $A=\begin{bmatrix}3&8&7&9\\2&4&6&6\\1&2&2&1\end{bmatrix}$.