Reg.	No.:			

St Aloysius College (Autonomous)

Mangaluru

Semester III - P.G. Examination - M.Sc. Chemistry

February - 2022

ORGANOMETALLIC, BIOINORGANIC AND COORDINATION CHEMISTRY ST. ALOYSIUS COLLEGI

Time: 3 Hours

PG Library Max. Marks: 70

(5x2=10)

PART - A MANGALORE-575 004

Answer any <u>FIVE</u> sub divisions of the following:

- a) Give two examples each for di and tetra hapto ligands.
- b) Citing an example, explain 18-electron rule.
- Distinguish between homogeneous and heterogeneous catalysis with suitable examples.
- d) Illustrate the industrial importance of oxo process.
- e) Explain the roles of Zinc and Manganese in biological system.
- f) Give the biological functions of myoglobin.
- g) Distinguish between complementary and non-complementary reactions.
- h) Illustrate the terms: inert and labile complexes with examples.

PART - B

Answer any <u>FIVE</u> of the following choosing at least one full question from each unit: (5x12=60)

UNIT - I

- 2. a) Discuss the methods of synthesis, structure and bonding in Lithium alkyls.
 - b) Explain the bonding in metal complexes of butadiene.
 - c) Explain the synthesis and bonding in ferrocene. (4)
- 3. a) Discuss the structure and bonding in metal cyclopentadiene complexes. (4)
 - b) Explain the bonding in metal alkene complexes. (4)
 - c) Write a brief account of structure and bonding in transition metal complexes with π ligands with special reference to arenes and COD. (4)

UNIT - II

4. a) Write a note on Fischer-Tropsch reaction.

(4)

(4)

(4)

- b) What is water-gas shift reaction? Explain the catalytic cycle for water gas shift reaction.
 - (4)

(4)

c) Discuss the mechanism of hydrogenation of olefins.

Contd...2

PH 582.3

Reg. No:

St Aloysius College (Autonomous)

Semester III – P.G. Examination – M.Sc. Chemistry Mangaluru

February - 2022

ELECTROCHEMISTRY AND THERMO-ANALYTICAL METHODS

Max. Marks: 70

Time: 3 Hours

ST. ALOYSIUS COLLEGE PG Library

1. Answer any <u>FIVE</u> sub-divisions of the following: (5x2=10)

- a) Give the fundamental principle of the solvation process.
- b) List the limitations of the Gouy-Chapman Stern Model.
- c) What is the principle of Coulometry?
- d) Differentiate between Polarography and Voltammetry.
- e) Write the reaction mechanism involved at the cathode and anode of a proton exchange membrane fuel cell.
- f) Mention the advantages and reaction mechanism of Kolbes synthesis by electrochemistry over organic synthesis.
- g) List the factors that affect the rate of corrosion.
- h) Sketch the thermogram and mention the degradation reactions at different temperature ranges for CuSO₄.5H₂O

PART - B

Answer any FIVE of the following choosing at least one full question (5x12=60) from each unit:

UNIT- I

- 2. a) Discuss Helmholtz Perrin Model interface and explain its limitation. (4)
 - b) Explain the theory of formation of double layer at Semiconductor -(4)Electrolyte interface.
 - (4)c) Explain the spectroscopic evidence towards ion-solvent interaction.
- 3. a) What is Solvation number? Explain any one method for its (4)determination.
 - (4)b) Briefly describe the thermodynamics of electrified interfaces.
 - c) Explain the influence and competition of water and organic molecules (4) at the electrified interface.

UNIT- II

- 4. a) With a neat schematics, illustrate the construction and working of (4)Dropping Mercury Electrode.
 - b) Briefly explain the principle and working of different types of (4) coulometric techniques. Contd...2

DU EO3 3	ge No. 2
c) Enumerate the advantages and applications of electrochem	cal
	(4)
stripping analysis.	
5. a) What is the function of a reference electrode? Classify and give suita	ble
	(4)
example.b) Sketch and explain the nature of different types of amperometri	С
	(4)
titration curves	
c) Write a short note on: i) Cyclic Voltammetry ii) Ilkovic equation.	(4)
i) Cyclic Voltammetry	()
UNIT- III	
6. a) What are the disadvantages of primary batteries?. Discuss the	e (4)
working of a Laclanche dry cell.	(4)
b) Illustrate the principle and procedure with the help of reaction	1
mechanism, the electro-inorganic synthesis of fluorine.	(4)
c) Explain the principle and applications of photoelectrochemical cells.	(4)
c) Explain the principal	
7. a) With the suitable examples, discuss the mechanism involved in the	9
reduction of nitro compounds by electro-organic synthesis.	(4)
hatteries? List their advantages and imports	ant
	(4)
applications.c) Describe the construction and working of bio-fuel cells.	(4)
c) Describe the construction and working of the	
UNIT- IV	
the meeting overlain the instrumentation and working princi	ple
	(4)
of DTA. b) With suitable examples, explain the effect of temperature or	1
b) With suitable examples, explain the chosen	(4)
hydrated organic and inorganic compounds.	
c) Write a short note on:	(4)
i) Microbial corrosion ii) Galvanic corrosion	
of thermometric titrations in	L
9. a) Discuss the principle and applications of thermometric titrations in	(4)
acid -base and complexometric titrations.	<u> </u>
b) Differentiate between TGA and DTA with respect to principle, working	(4)
and applications.	
c) Explain the working principle and application of DSC in the	(4)
determination of glass transition temperature	

		_	_
DS	-	12	- 7
\mathbf{r}	20		

Reg. No. :

St Aloysius College (Autonomous)

Mangaluru Semester III - P.G. Examination - M.Sc. Chemistry

February - 2022 MOLECULAR SPECTROSCOPY STEMEOYSTUS COLLEGE PAG Library MANGONLORE -576003

Max. Marks: 70

Time: 3 Hours

PART - A

- 1. Answer any <u>SEVEN</u> sub divisions of the following: (7x2=14)
- a) Why is splitting observed in 2-methylpropene but not in neopentyl chloride.
- b) How would you distinguish cyclohexanol from chlorocyclohexane on the basis of PMR spectroscopy?
- c) Calculate the chemical shift of benzene when proton chemical shift of TMS and benzene is 505 Hz at magnetic field of 1.5 T.
- d) ¹³C is NMR active while ¹²C is not why?
- e) UV absorption curves appears as a band rather than peaks Give reason.
- f) What are metastable ions? How its m/z value is calculated?
- g) What are overtones and hot bands?
- h) Assign the following frequency to their structure and rewrite in the increasing order of the same: 1745 cm⁻¹, 1850 cm⁻¹, 1780 cm⁻¹.

i) Give the fingerprint region of IR Spectrum. Comment on its significance.

PART - B

Answer any <u>FOUR</u> of the following choosing at least one full question from each unit: (4x14=56)

UNIT - I

- 2. a) Write a note on
 - i) Double resonance techniques ii) Nuclear Overhauser effect (6)
 - b) What internal standards are used in recording the NMR spectrum and write its unique features. (4)
 - c) Write a note on the use of NMR in medical diagnostics. (4)
- 3. a) What is anisotropic effect? How it affects the chemical shift of protons in alkenes, benzene and carbonyl compounds.
 - b) Discuss the spin-spin coupling of magnetic nuclei. (4)
 - c) How are intra and inter-molecular hydrogen bonding differentiated by

 ¹H NMR spectroscopy? (4)

Contd...2

(6)

(6)

4. a) Calculate λ_{max} for following compounds using Woodward Fieser's rules. (6)

- b) Predict the relative intensities of molecular ion and isotope peak for the following
 (4)
 - i) C₅H₀Br₃ ii) p-chlorobenzene
- c) Describe with an example, the simultaneous determination of chromium and manganese by spectrometric method. (4)
- 5. a) Write notes on
 - i) Solvent effects on UV absorption
 - ii) Off resonance proton decoupling (6)
 - b) Discuss the factors influencing fragmentation in mass spectrometry. (4)
 - c) Compound with a molecular formula $C_9H_{10}O_2$ shows the following (4) spectral data

NMR: δ =1.96(3H,s), δ =5.00(2H,s), δ =7.22(5H,s)

IR=1745 cm⁻¹, 1125 cm⁻¹, 749 cm⁻¹, 697 cm⁻¹

Mass:m/z=150,135,91,65. Deduce the structure of the compound.

UNIT - III

6. a) How do you distinguish the following pairs of compounds by IR spectroscopy?
(6)

ii)
$$NH_2$$
 and H

- iii) H and S
- b) Discuss the application of IR spectroscopy in the identification and study of aldehydes, amides and phenols with suitable examples.
- c) Predict the important stretching frequencies in the IR spectrum of 3-methyl-2-butanone. (2)
- 7. a) Discuss the application of IR spectroscopy in the identification and study of hydrocarbons alock in the identification and
 - study of hydrocarbons, alcohols and amines with suitable example.

 (6)

 Write note on NIR and FIR spectroscapy.

 (5)
 - c) How IR spectroscopy is helpful in distinguishing intermolecular and intramolecular hydrogen bonding. (5)
