Reg. No:.

St Aloysius College (Autonomous)

Mangaluru

Semester III- P.G Examination - M.Sc. Chemistry December -2022

		Organometallic, Bioinorganic and Coordination Chemistry	
Time	e: 3 H	irs. Max	. Marks:70
		Part A	
1. a.		wer any <u>FIVE</u> sub divisions of the following: (ify the complex [RhCl(PPh ₃) ₃] follows 16 electron rule.	5X2=10)
b.	Outl	ine a method for the synthesis of η^4 alkyne complexes.	
c.	Wha	at properties of $AICl_3$ and $TiCl_4$ in Ziegler Natta compound m	nake it a
	poly	merisation catalyst?	
d.	Men	tion the advantages of water gas shift reaction.	
e.	Ider	ntify the significant role of Mg and Ca in biological process.	
f.	Wha	at is Bohr effect?	
g.	Wha	at are inert and labile complexes? Give an example.	
h.	Defi	ne energy profile of a reaction.	
		Part B	
	Ans	swer any <u>FIVE</u> of the following questions choosing (5 east one full question from each unit. UNIT -I	X12=60)
2.	a.		
	۵.	compounds with suitable example.	(4)
	b,	the standard management of the complexes	
		and mention its properties.	(4)
	c.	How are organic ligands classified based on hapticity	(4)
2	_	Compare and contrast Fischer carbene from Schrock carbene.	
3.	a.	Comment on their reactivity.	(4)
	b.	Explain how Pd(II) complexes with 16e are stable.	(4)
	c.	How metal carbynes are prepared? Give their applications. UNIT-II	(4)
4.	a.	Explain the mechanism of Monsanto acetic acid process.	(4)
٦.	b.	Western process. How do regeneration of the origin	inal
	ъ.	catalyst be done?	(4)
	C.	Discuss Fischer Tropsch reaction.	(4)
5.	a.	Write the differences between homogeneous and heterogeneous	
٥.	u.	catalysis.	(4)
	b.	Explain water gas shift reaction.	(4)
	c.	How stereoregular polymers are synthesized by using Ziegler Natt	а
		catalyst?	(4)

UNIT -III

6.	a.	Classify the ionophores in terms of mechanism of ion transport. How	
		do you distinguish them?	(4)
	ь.	the transport trace metals in biological system.	(4)
	c.	Explain nitrogen fixation process.	(4)
7.	a.	Discuss the structure and function of haemoglobin.	(4)
	ь.	Give the structural representation of active sites of 2Fe-2S and 4Fe-	
		4S ferredoxin. Comment on their biological activities.	(4)
	c.	Differentiate between hemerythrin and hemocyanin.	(4)
		UNIT -IV	
8.	a.	Explain substitution reactions in square planar complexes.	(4)
	b.	Explain kinetic aspects of base hydrolysis and its conjugated base	
		mechanism.	(4)
	c.	Explain the inner and outer sphere mechanism	(4)
9.	a.	Discuss on complimentary and non-complimentary reactions.	(4)
	b.	Write a note on kinetics and mechanism of octahedral substitution	
		reactions in which inert ligands are present . Give any 3 factors	
		justifying the mechanism.	(4)
	c.	Explain association and dissociation mechanism. Give the	
		intermediates in these mechanisms.	(4)

Reg. No:.:

St Aloysius College (Autonomous) Mangaluru

SEMESTER III- P.G Examination - M.Sc. Chemistry

December - 2022

ELECTROCHEMISTRY AND THERMO-ANALYTICAL METHODS Time: 3 hours Max marks: 70

PART-A

- 1. Answer any <u>FIVE</u> sub divisions of the following: (5x2=10)
- Explain the theory of electrode and electrolyte interface and explain the origin of electrode potential.
- b. Define Solvation number.
- c. Explain how to identify the endpoint in the potentiometric titrations of the acid-base titration.
- d. Differentiate between primary and secondary battery.
- e. Differentiate between classical organic reaction and electro organic reaction and write the advantages of electro organic reaction.
- f. Write the need of galvanic series over electrochemical series.
- Write the different factors affecting TGA curves.
- h. Differentiate between energy storage devices and energy conversion devices and give example of each cases.

PART-B

Answer any <u>FIVE</u> of the following choosing at least one full (5x12=60) question from each unit:

UNIT-I

- 2. a. Explain the term
 - (i) Lipmann equation
 - (ii)Double layer capacitance

- (4)
- b. Explain the Gouy-Chapmann theory of diffuse double layer.
- (4)
- c. Write in detail Ion-solvent interaction and ion-quadruple models.3. a. Give an account of the Helmoholtz-Perrin model of an electrified
 - interface.

(4)

(4)

- b. Discuss the salient features of the Stern model of electrified
 - interface.

(4)

- c. Write a note on solvation number and its determination.
- (4)

UNIT-II

4. a. Explain the construction and working of a glass electrode. Mention the advantages and disadvantages.

(4)

- b. Sketch the basic circuit for the polarographic method of analysis.
 - How is it used for obtaining the polarogram of an electroactive species.

(4)

- c. Write short notes on the following:
 - (a) Biamperometry (b) Rotating microelectrode

(4)

Contd...2

PH	582	Page	e No.2
5.	a.	Describe the experimental set-up required for the potentiometric	
		titration of Fe ²⁺ with Cr ₂ O ₇ ²⁻ ?	(4)
	b.	Discuss the following:-	
		(i)Half wave potential	
		(ii)Current Maxima and Maximum suppressors in polarography.	(4)
	c.	Write short notes on controlled current electrolysis and controlled	
		electrode potential electrolysis	(4)
		UNIT-III	
6.	a.	Draw a neat diagram of photogalvanic cells and explain the working	
		function.	(4)
	b.	Explain the construction of lead storage battery. Write the	
		discharging and charging reactions.	(4)
	c.	Write the advantages of electro-organic and electro-inorganic	
		synthesis. Explain the kolbes synthesis and synthesis of fluorine in	
		electrochemical methods.	(4)
7.	a.	Explain the construction and working of the following fuel cells:	
		(i) H ₂ - O ₂ fuel cell (ii) Methanol fuel cell	(4)
	b.	Mention the cell performance of a primary cell. Explain why dry cell	
		cannot be recharged.	(4)
	c.	Explain oxidation and reduction of hydrocarbons by electrochemical	
		methods.	(4)
		UNIT-IV	
8.	a.	Explain the sacrificial anode and impressed current techniques for	
		prevention of corrosion.	(4)
	b.	Describe instrumentation for thermogravimetry.	(4)
	c.	What are thermometric titrations? What is the principle underlying	
		the titrations.	(4)
9.	a.	What are anodic and cathodic inhibitors? Explain how corrosion	
		control can be achieved?	(4)
	b.	TGA studies reveal that MgC₂O₄ exists as MgO above 480°C, CaC₂O₄	
		changes to CaCO₃ between 3980 and 4200 C and CaCO₃ changes to	
		CaO between 660° and 840° C. A mixture of CaC₂O₄ and MgC₂O₄	
		obtained from 0.35 g dolomite (CaCO ₃ + MgCO ₃) weighed 0.24 g at	
		500°C and 0.1696 g at 900°C respectively. Calculate the % CaCO ₃	
		and % MgCO ₃ in the original sample of dolomite.	
		(At.wts of Ca and Mg are 40 and 24 respectively).	(4)
	c.	Draw a schematic diagram of DTA apparatus	
		and give the function of its different components.	(4)

Reg. No:

St Aloysius College (Autonomous)

Mangaluru

SEMESTER III- P.G Examination - M.Sc. Chemistry

December - 2022

MOLECULAR SPECTROSCOPY

Time: 3 Hours

Max. Marks: 70

PART - A

1. Answer any <u>SEVEN</u> sub-divisions of the following:

 $(7 \times 2 = 14)$

- a) A proton is coupled to two non-equivalent neighbouring protons. What will be the multiplicity and the relative intensity of lines in the signal?
- b) Why TMS is considered as reference standard for recording PMR and CMR analysis?
- c) The proton decoupled spectrum of a trichlorobenzene consists of two signals only. What trichlorobenzene is it?
- d) Arrange the following in the order of their λ_{max} in the UV-Vis spectra and give reasons.

- e) What are auxochromes and chromophores?
- f) Distinguish between 'molecular ion peak' and 'basepeak' with suitable examples.
- g) What are the conditions for a molecule to exhibit vibrational spectra?
- h) What is Fermi resonance? Explain by taking suitable example.
- i) What is finger print region. Give its significance.

PART - B

Answer any FOUR of the following choosing at least one $(4\times14=56)$ full question from each unit.

UNIT-I

a) How will you distinguish among the carbonyl isomers pertaining 2. to the molecular formula C₄H₈O on the basis of proton coupled ¹³C NMR spectroscopy?

(4)

b) Write a note on the following.

(6)

i) NOE ii) Shift reagents

c) Discuss the factors influencing chemical shift values in NMR spectroscopy.

(4)

a) Discuss the AX₂ and A₂X spin systems taking suitable examples. 3.

(5)

b) Why and how spin-spin coupling occurs? Discuss the spin-spin coupling in ethylacetate.

(5)

c) Differentiate decoupled and Off resonance coupled ¹³C NMR with suitable examples.

(4)

UNIT-II

- Discuss the effect of substituents and solvents on UV absorption of aromatic compounds.
 - b) Discuss the Woodward Fieser's rules and predict the λmax for the following.

(6)

- c) Write a short note on factors affecting reaction pathways in mass (4) spectroscopy.
- a) Discuss the fragmentation pathways for the following systems with suitable examples (6)i)Halides ii)Aldehydes iii) Alkanes
 - (4)b) Write a short note on spectrophotometric titrations
 - c) Discuss any 2 basic fragmentation types in Mass spectrometry (4)with suitable examples.

UNIT-III

- a) How does the vibrational coupling and hydrogen bonding affect (4)vibrational frequencies in IR spectroscopy.
 - b) How would you distinguish between the following compounds in each pair by IR spectral studies? Name the vibrations and appropriate positions of absorption in each case.
 - Propyne & Acetonitrile
 - 1-Hexene & 1-Hexyne ii)
 - (6)Dimethylamine & Ethylamine iii)
 - (4)c) Write note on NIR and FIR Spectroscopy.
- a) How can the following be identified & studied by IR spectroscopy 7.
 - Alkynes i)
 - Aldehydes ii)
 - (6)**Alcohols** iii)
 - b) Deduce the structure of an organic compound that exhibited the following spectral data: Molecular Formula : $C_9 H_{10} O_2$

IR (cm⁻¹): 1690;

PMR (δ): 2.5 (s, 3H), 3.8 (s, 3H), 6.9 (d, 2H, J=8Hz), 7.8 (d, 2H, J=8Hz);

(4)

CMR (\delta): 26, 56, 114, 129, 130, 165, 197

d) An organic compound containing two oxygen atoms has a mass 136 and exhibited the following data. Deduce its structure. UV (nm): 250 (very intense) Molecular Formula :C8 H8 O2

IR (cm⁻¹): 820, 1230, 1670, 2740, 2850, 3050 (4)

PMR (δ): 3.9 s (3H), 6.9 d (2H), 7.8 d (2H), 9.8 s (1H)

MS (m/z): 29, 51, 77, 92, 135, 136.